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Abstract

A quantum damped-polariton model is constructed for an inhomogeneous
anisotropic linear dielectric with arbitrary dispersion in space and time. The
model Hamiltonian is completely diagonalized by determining the creation
and annihilation operators for the fundamental polariton modes as specific
linear combinations of the basic dynamical variables. Explicit expressions are
derived for the time-dependent operators describing the electromagnetic field,
the dielectric polarization and the noise term in the latter. It is shown how to
identify bath variables that generate the dissipative dynamics of the medium.

PACS numbers: 42.50.Nn, 71.36.+c, 03.70.+k

1. Introduction

Quantization of the electromagnetic field in a linear dielectric medium is a nontrivial task for
various reasons. First of all, since the response of a dielectric to external fields is frequency-
dependent in general, temporal dispersion should be taken into account. The well-known
Kramers—Kronig relation implies that dispersion is necessarily accompanied by dissipation,
so that the quantization procedure has to describe an electromagnetic field that is subject to
damping. Furthermore, since the transverse and the longitudinal parts of the electromagnetic
field play a different role in the dynamics, the quantization scheme should treat these parts
separately. For inhomogeneous and spatially dispersive media this leads to complications in
the quantization procedure, which further increase in the presence of anisotropy.

When the losses in a specific range of frequencies are small, temporal dispersion can
be neglected. Field quantization in an inhomogeneous isotropic dielectric medium without
spatio-temporal dispersion has been accomplished by employing a generalized transverse
gauge, which depends on the dielectric constant [1-6].

A phenomenological scheme for field quantization in lossy dielectrics has been formulated
on the basis of the fluctuation—dissipation theorem [7—10]. By adding a fluctuating noise
term to the Maxwell equations and postulating specific commutation relations for the operator
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associated with the noise, one arrives at a quantization procedure that has been quite successful
in describing the electromagnetic field in lossy dielectrics. An equivalent description in terms
of auxiliary fields has been given as well [11, 12], while a related formalism has been presented
recently [13]. However, all of these quantization schemes have the drawback that the precise
physical nature of the noise term is not obvious, since its connection to the basic dynamical
variables of the system is left unspecified. As a consequence, the status of the commutation
relations for the noise operator is that of a postulate.

A justification of the above phenomenological quantization scheme has been sought by
adopting a suitable model for lossy dielectrics. To that end use has been made of an extended
version of the Hopfield polariton model [14] in which damping effects are accounted for by
adding a dynamical coupling to a bath environment. Huttner and Barnett [15, 16] were the
first to employ such a damped-polariton model in order to achieve field quantization for a lossy
dielectric. Their treatment, which is confined to a spatially homogeneous medium, yields an
explicit expression for the noise term as a linear combination of the canonical variables of
the model. In a later development, an alternative formulation of the quantization procedure
in terms of path integrals has been given [17], while Laplace transformations have been used
to simplify the original formalism [18]. More recently, the effects of spatial inhomogeneities
in the medium have been incorporated by solving an inhomogeneous version of the damped-
polariton model [19-21].

In this way a full understanding of the phenomenological quantization scheme has been
reached, at least for those dielectrics that can be represented by the damped-polariton models
mentioned above. The latter proviso implies a limitation in various ways. First, one would
like to include in a general model not only the effects of spatial inhomogeneity, but also those
of spatial dispersion. Furthermore, it would be desirable to incorporate the consequences
of spatial anisotropy, so that the theory encompasses crystalline media as well. Finally,
while treating temporal dispersion and the associated damping, we would like to refrain
from introducing a bath environment in the Hamiltonian from the start. Instead, we wish to
formulate the Hamiltonian in terms of a full set of material variables, from which the dielectric
polarization emerges by a suitable projection. In this way we will be able to account for any
temporal dispersion that is compatible with a few fundamental principles like causality and
net dielectric loss. For a homogeneous isotropic dielectric without spatial dispersion such an
approach has been suggested before [16, 22].

Recently, several attempts have been made to remove some of the limitations that are
inherent to the earlier treatments. In [23] the effects of spatial dispersion are considered in
a path-integral formalism for a model that is a generalization of that of the original Huttner—
Barnett approach. The discussion is confined to homogeneous dielectrics and to leading
orders in the wavenumber, so that an analysis of the effects of arbitrary spatial dispersion in
an inhomogeneous medium is out of reach. In [24] crystalline media have been discussed in
the framework of a damped-polariton model with an anisotropic tensorial bath coupling. A
complete diagonalization of the model along the lines of [15, 16] turned out to face difficulties
due to the tensorial complexity, so that the full dynamics of the model is not presented. Both
spatial dispersion and anisotropy are incorporated in the quantization scheme discussed in [25].
Use is made of a Langevin approach in which a damping term of a specific form is introduced.
The commutation relations for the noise operator are postulated, as in the phenomenological
quantization scheme. Finally, several treatments have appeared in which a dielectric model is
formulated while avoiding the explicit introduction of a bath [26, 27]. However, a complete
expression for the noise polarization operator in terms of the basic dynamical variables of the
model is not presented in these papers. A direct proof of the algebraic properties of the latter
operator is not furnished either.
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In the present paper, we shall show how the damped-polariton model can be generalized
in such a way that all of the above restrictions are removed. As we shall see, our general
model describes the quantization and the time evolution of the electromagnetic field in an
inhomogeneous anisotropic lossy dielectric with arbitrary spatio-temporal dispersion. A
crucial step in arriving at our goals will be the complete diagonalization of the Hamiltonian.
It will lead to explicit expressions for the operators describing the electromagnetic field and
the dielectric polarization, and for the noise contribution contained in the latter. In this way
the commutation relations for the noise operator will be derived rigorously from our general
model, instead of being postulated along the lines of the phenomenological scheme. Finally,
we shall make contact with previous treatments by showing how to construct a bath that
generates damping phenomena in the dynamical evolution of the model.

2. Model Hamiltonian

In this section, we shall construct the general form of the Hamiltonian for a polariton model
describing an anisotropic inhomogeneous dispersive dielectric. The result, which we shall
obtain by starting from a few general principles, will contain several coefficients that can be
chosen at will. As we shall see in a subsequent section, these coefficients can be adjusted in
such a way that the susceptibility gets the appropriate form for any causal lossy dielectric that
we would like to describe.

The Hamiltonian of the electromagnetic field is taken to have the standard form

H; = fdr {L[H(r)]2 + L[V A A(r)]z} (1
2¢e0 20

with the Hermitian vector potential A(r) and its associated Hermitian canonical momentum
II(r). We use the Coulomb gauge V - A = 0. In this gauge both IT and A are transverse. The
canonical commutation relations read

[IL(r), A(r)] = —ihdr(r — ), [TL(r), II(r")] = 0, [A(r),A)] =0 2

where the transverse delta function is defined as o1(r) = 18(r) + VV (4zr)~!, with | the unit
tensor.
The Hamiltonian of the dielectric material medium is supposed to have the general form

o0
Hyn=nh / drf dow wCl (r, w) - Cou(r, ®) (3)
0
with the standard commutation relations for the creation and annihilation operators:
[Cu(r, @), CL(, )] =18(r — )(0 — &), [Cin(r, @), Cn (¥, )] = 0. “)

The medium operators commute with the field operators.

The material creation and annihilation operators are assumed to form a complete set
describing all material degrees of freedom. Hence, any material dynamical variable, for
instance the dielectric polarization density, can be expressed in terms of these operators. For
a linear dielectric medium, the Hermitian polarization density is a linear combination of the
medium operators, which has the general form

P(r) = —ih / dr’ / do/'Co(r', @) - T(¥, 1, ') + h.c. (5)
0

The complex tensorial coefficient T appearing in this expression will be determined later
on, when the dielectric susceptibility is properly identified. On a par with P we define its
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associated canonical momentum density W, again as a linear combination of the medium
operators

W(r) = —/dr’/ do' @' Cr(', @) - S, r, ) +h.c. (6)
0

with a new complex tensorial coefficient S that is closely related to T, as we shall see below.
For future convenience we inserted a factor ' in the integrand and a minus sign in front of
the integral.

As W and P are a canonical pair, they must satisfy the standard commutation relations:

[W(r), P(r')] = —ifl §(r — 1), [W(r), W] =0, [P(r), P(r)] = 0. )

Hence, the coefficients S and T have to fulfil the requirements:

o0
/dr”/ do" T, 1, 0" - T*@", ¥, 0") —cc. =0 (8)
0
/dr”/ do"o"S(", r,0") - T*(", ¥, &) +c.c. = 18(r — 1) )
0
9]
/dr”/ do" 08", v, ") - 8* ", ¥, ') —c.c. =0 (10)
0

where the tilde denotes the transpose of a tensor and the asterisk the complex conjugate.

Furthermore, the Hamiltonian should contain terms describing the interaction between
the field and the medium. Two contributions can be distinguished: a transverse part and a
longitudinal part. In a minimal-coupling scheme, which we shall adopt here, the transverse
part is a bilinear expression involving the transverse vector potential A and the canonical
momentum density W. To ensure compatibility with Maxwell’s equations an expression
quadratic in A should be present as well, as we shall see in the following. For dielectrics
with spatial dispersion both expressions are non-local. The general form of the transverse
contribution to the interaction Hamiltonian is

H, = —h / dr/ dr' W(r) -Fi(r,r) - A + %h / dr/ dr'A(r) - Fo(r, r') - A(r) 11

with real tensorial coefficients F; and F, that will be fixed in due time. In view of the form of
the second term we may take F, to be symmetric upon interchanging both its spatial variables
and its indices.

The longitudinal contribution to the interaction Hamiltonian is given by the electrostatic
energy involving the polarization density, which reads

Ho= 5 / dr{[PO]L) = / / gy Y POV P (12)

8replr — 1|

Here the subscript L denotes the longitudinal part of the polarization density, which is defined
as [P(r)], = =V [dr P(r')- V(4x|r— r'|)~!. Furthermore, V' is the spatial derivative acting
on a function of r’.

The total Hamiltonian H = H; + Hy, + H; + H is given by the sum of (1), (3), (11)
and (12). It depends on the tensorial coefficients F;, F, and implicitly on T and S
through P and W. All of these coefficients can as yet be chosen at will, as long as the
identities (8)—(10) are satisfied. To derive constraints on these coefficients we turn to the
equations of motion.
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The Heisenberg equations of motion that follow from the total Hamiltonian are

A(r, 1) = g—lOH(r, 1) (13)

II(r, 1) = iAA(r, H+h / dr W', t) - [Fi(',0)]r —h / dr'[Fo(r, X))t - AQ@, 1)  (14)
H“o
Cn(r,w, 1) = —1wCpny(r, w, t) — iw/dr’/dr”s*(r, r,o)-F@,r) -Ax”, 1)

1
+— [ d'T"(r, v, ) - [P, D] (15)
€0
where all operators now depend on time. The subscript L denotes the longitudinal part

with respect to r’. The time derivative of the polarization density follows by combining (5)
and (15):

o0
P(r, 1) = —h/dr// do' /' Cr(¥', &', t) - T(, 1, ®) —h/dr//dr”
0 N )
X /dr’”/ do'd' T, r, o) -S*@, 1", o) -Fi ", ¥ - A@”, 1)
0

h R
—i— dr’f dr”/ do' T, 1, o) - T°@, 1", &) - [PQ@”, )1 +h.c. (16)
&0 0
where h.c. denotes the Hermitian conjugate of all preceding terms. Upon using (9) one finds
that the second term (together with its Hermitian conjugate) equals —7 [ dr'F (r, r') - A(¥', ).
Furthermore, the last term (again together with its Hermitian conjugate) vanishes on account
of (8).

Eliminating IT from (13) and (14) we find an inhomogeneous wave equation for the vector
potential

AA(r, 1) — %A(r, 1) = —uoh/dr/W(r/, 1) - [Fi(r',p)lr +Moh/dr/[Fz(r, )l - A, 1)
C
(17)

where the first term at the right-hand side can be expressed in terms of the medium operators
by substituting (6). According to the Maxwell equations the vector-potential source term,
which is given by the right-hand side of (17), should equal —o[P(r, £)]r. Hence, comparison
with (16) leads to the identity

o0
—h/dr’/dr”/ do/ @' {Co(¥, &', 1) - SO, ¥, &) + Cl (¥, &, 1) - S* (X, ¥, ')}
0

F @, Dl — R / ar[Fa(r, 'l - A, )
) / dr’/ do/' o' {Cp (¥, &, 1) - [T(X, 1, @)1
0

+CIn(r’, o, 1) [T, r, )1} — R / dr'[Fi(r,t)]r - A, 1). (18)

Upon equating the coefficient of the vector potential we arrive at the relation [Fy(r, r')]rp =
[F2(r, r')]Tr, which connects the transverse parts of the tensors F; and F,. A second relation,
namely [T(r,r', w)]r = f dr’S(r,r’, w) - [F1(r”, r')], follows by equating the coefficient
of C,. Combining these two relations with (8)—(10) we thus have found that the tensors T,
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S, F; and F, have to satisfy five conditions. Apart from these constraints the coefficients can
be chosen freely while constructing our model Hamiltonian. We shall use this freedom to
impose instead of the relations following from (18) two somewhat stronger conditions that
result upon including the longitudinal parts:

F,(r,¥) = F(r, 1) (19)

T, r,w) = /dr”S(r, r’,w)-Fi (@, r). (20)

As the first of these equalities shows, the bilinear coupling of W with A and the quadratic
vector-potential term in (11) have to occur simultaneously. This is a well-known consequence
of the minimal-coupling scheme. In view of (19) we shall omit the subscripts of F; in the
following. Furthermore, we shall use (20) to eliminate S from the formalism altogether.
Summarizing the above results, we have obtained the following Hamiltonian for a linear
inhomogeneous anisotropic dispersive dielectric interacting with the electromagnetic field:

H= /dr{i[n(r)]hi[v /\A(r)]z} +h/dr/ do wCl (r, ®) - Cp(r, ®)
2¢&0 210 0
+h/ dr/ dr// dw w[Cp(r, ®) - T(r, ¥, ®) + Cl (r, ) - T*(r, ¥, 0)] - A()
0

+ 1/‘fz / dr/dr’A(r) <F(r,r)-A@) + L / dr {[P(r)]L}>. 21
2 2eq

The complex tensorial coefficient T can be chosen freely. It has to satisfy two constraints, the
first of which has been written already in (8). The second one follows by substituting (20)
in (10):

o0
/dr”/ do"o™T@" r,0") - T*@", ¥, ") —c.c. = 0. (22)
0
Finally, the insertion of (20) in (9) leads to the following equality:
oo
/dr”/ do T, r,0") - T*@', ¥, 0") +c.c. = F(r,T). (23)
0

This relation defines the real tensor F in terms of T. It shows that F(r, r’) satisfies the symmetry
property F(r, ') = F(r’, r), as we know already from the way F, occurs in (11). As an integral
kernel the tensor F(r, r’) is positive-definite. This is established by taking the scalar products
of (23) with real vectors v(r) and v(r'), and integrating over r and r’. The result is positive for
any choice of v. As a consequence, the inverse of F is well defined.

The polarization density is given by (5), while the canonical momentum density reads
according to (6) with (20):

oo
W) = —/dr’/dr”/ do' @' Cpn(r, o) - T, x", &) - F ' (r", r) + h.c. (24)
0

where the right-hand side contains the inverse of F.

The Hamiltonian (21) has been constructed by starting from general forms for its parts
H:, Hy,, H; and H.g and requiring consistency with Maxwell’s equations. It may be related to
a Lagrange formalism, as is shown in appendix A.

In the following, we shall investigate the dynamics of the model defined by (21). As the
Hamiltonian is quadratic in the dynamical variables it is possible to accomplish a complete
diagonalization. This will be the subject of the next section.
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3. Diagonalization of the Hamiltonian
We wish to find a diagonal representation of the Hamiltonian (21) in the form
[e.¢]
H:h/dr/ do w Cl(r, w) - C(r, w). (25)
0

The creation and annihilation operators satisfy the standard commutation relations of the
form (4). They are linear combinations of the dynamical variables in (21):

C(r,w) = /dr/ {fl(r, r, o) A@) +f(r, v, w) - II{I)

+ / da)’[f3(r, r', o o) Cu, o) +f4r,v, 0, o) - Cjn(r’, w’)]} (26)
0

with as-yet unknown tensorial coefficients f;, the first two of which are taken to be transverse
in their second argument. To determine f; we use Fano’s method [28]: we evaluate the
commutator [C(r, w), H] and equate the result to 7wC(r, ). Comparing the contributions
involving the various canonical operators we arrive at the four equations

260, 0) = oh(r.r, o) 27)
200)

i 7/ / . // /! // /
L ABE T, o) —m/dr o) - [FO Ol
Mo

[o.¢]
+/dr”/ do" " {f3(r, ¥, w, &") - [T*@", ¥, &")]p
0

—f(r, 1", w, ") [TA", ¥, 0)]r} = ofi (1,1, ®) (28)
—iha)//dr”fz(r, r, o) - T, r, o) +o'Hr Y, o, o)

dr// / dr/// / da)”{f?, (r’ r//’ (,!), w//) . [T* (r//’ r///’ a)”)]LW

+f4(r ', w, ") [Ta, v, o) - T, v, o) = of(r, 7, 0, o)  (29)
—ihw’ / dr'f(r, v, 0) - T, v, o) — o'fa(r, ¥, 0, @)
o0
dr// / dr/// f da)//{f3 (r’ r//’ a)’ w//) . [T* (l.//7 r///’ a)//)]L/H
0
+hr 0, o) [Ta 1", o)} - T, 1", ) = ofs(r, v, 0, @). (30)

The solution of these equations can be obtained by a method that is a generalization of
that used in our earlier work [19]. The details are given in appendices B and C. The results are

2

firr, o) = 2= f dr'T(r, 1", o) - [GE, ¥, w — i0)]p 31)
C

f(r, v, w) = ipow / dr'T*(r, v", o) - [G(O", ¥, 0 — i0)]p (32)

f;(r,r, 0, o) =15 —1)s(w— o) — ,uoha)/ dr” / dr’T*(r, v, o)

: [G(r//a r//” w — iO)]T”' : T(r/5 r///’ CL)/)
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2
+pgh—2 / dr” f AT (r, v, )
w—o —1i0

-G, Y, w—1i0) - T(, ¥, o) (33)

t(r.r, o, ) = poliw / dr/// AT 1, ) - GO 0 — 0) ] - T 1, o)

2
- / dr” / dr’T*(r, v, o)
o+ o

G, 0 —i0) - T, v, o). (34)

— poh

The Green function G(r, r’, 7) occurring in these expressions is defined as the solution of

the differential equation:
2
—[G(r, ¥, z) x V’] <V + —G(r r,z)

2
+5 f dr'G(r, 1", 2) - X/, ¥, 2) = 16(r — ). (33)
C

The spatial derivative operator V' acts to the left on the argument r’ of G(r, r’, 7). According
to this inhomogeneous wave equation the Green function determines the propagation of waves
through a medium that is characterized by a tensor x(r, r’, z). The latter plays the role of a
non-local anisotropic susceptibility, as will become clear in the next section. It is defined in
terms of T and its complex conjugate as

x(r,r,z) = —/dr”/ do [—T(r” r,o) - T, r, w)

— 70 r,0) - TQ, ¥, w)] (36)
a)+

with the frequency argument z either in the upper half or the lower half of the complex z-plane,
which has got a cut along the real axis. Likewise, the Green function in (35) is defined in the
complex z-plane with a cut along the real axis. Both the susceptibility and the Green function
are discontinuous across the cut.

We have succeeded now in finding the diagonal representation of the Hamiltonian of
our model. The diagonalizing operators are given by (26), with coefficients that are listed
in (31)—(34).

4. Field, polarization and susceptibility

Once we have the diagonal representation of the Hamiltonian at our disposal, we can determine
the full time evolution of the dynamical variables. In the following we will derive the time
dependence of the vector potential, the electric field and the polarization. As we shall need a
few properties of the tensors x and G, we shall discuss these first.
From its definition (36) it follows that the tensor x satisfies the symmetry relations
x(r,r',z) = x(',r, —2) 37
and
X (r,r',z) = x(r,r', —z%) (38)
so that x(r, ', z) is real on the imaginary axis. The discontinuity across the cut along the real
axis is given by

/ . / . 2]Tih /! /! /! /
x(r, r,w+i0) — x(r,r, 0 —i0) = — | dr" T@",r, 0) - T"(", 1, ) 39)
&0



Field quantization in inhomogeneous dielectrics with spatio-temporal dispersion 3705

for positive w and by

/ . / . 27“71 A o /A
x@rr,o+i0) — x(r,r,o—i0)=——— [ ' T 0", r, —0) - T, 1, —w) 40)
<)

for negative . Hence, we may write (36) as
1 0 1
x(r, v, z) = —/ do——[x(r,v', 0 +10) — x(r, ¥, ® — i0)] 41)
21 ) w—2

which is the well-known Kramers—Kronig relation for the Fourier transform of a causal
function. The identities (8), (23) and (22) can be rewritten in terms of the discontinuity across
the cut:

oo
/ do[x(r, v, o +i0) — x(r, ¥, w —i0)] = 0 (42)
—00
*© / . ’ . 2rih /
f doo[x(, r,w+i0) — x(r, r, 0 —i0)] = E—F(r, r) (43)
—00 0
oo
/ dow o’ [x(r, ¥, 0 +i0) — x(r, ', © — i0)] = 0. (44)
—00

Incidentally, we remark that for large |z| the asymptotic behaviour of x follows from (41)
with (42)—(44) as

, h 1 1
xrr,z)~——F@rr)=+0( ). (45)
&0 Z Z
The above symmetry properties can be used to prove analogous symmetry relations for
the Green function G. By taking the complex conjugate of (35) and using (38) one derives
G*(r,r',z) = G(r, 1, —z%). (46)

The adjoint equation of (35) reads

2 2
—V X [V x G(r, ¥, )]+ SG(r,F, 2) + = / dr’ x(r. v, 2) -G, r. 2) = 18(r — 1)
C C

(47)

as follows from (35) after multiplication by G(r’, r”, z), integration over r’ and a partial
integration. Comparing this differential equation to that obtained by taking the transpose
of (35) and interchanging the position variables one finds with the use of (37) the reciprocity
relation:

G(r,r,z) = G, r, —2). (48)

Having obtained the relevant physical properties of the tensors x and G, we return to a
discussion of the time dependence of the dynamical variables. Inverting (26) by means of the
canonical commutation relations we get

A(r) = ih/dr/foodw?’;(r’, r,w) - C(r', w) +h.c. (49)
Substitution of (32) yields with tl?e help of (46) and (48)
A(r, 1) = uoh / dr’ / dr” / h do o[G(r, ¥, w +i0)]r - T(t", ¥, ) - C(t", w) e " +h.c.
i (50)

where we accounted for the time dependence of the diagonalizing operator C(r”, w).
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By differentiation with respect to space and time we can easily determine the time
evolution of the electromagnetic fields. Taking the curl of (50) we get

o0
B(r,t) = uoh/dr/fdr/’f dowV x G(r, ¥, w+i0) - T, ¥, w) - C¢", w)e " +h.c.
0
(51)

Furthermore, the transverse part of the electric field follows from (50) by differentiation with
respect to 7:

o0
[E(r, )] = ipoh / dr’ f dr’ / dw *[G(r, ¥, w +10)]7
0
T, v, w) - C’,w)e ™ +he. (52)

To determine the longitudinal part of the electric field we first have to derive an expression for
the polarization.
The medium operator Cy, (r, w) is a linear combination of the diagonalizing operator and
its Hermitian conjugate:
[e.¢]
Cin(r, w) = / dr’ / do/[f,(0, 1, 0, ) - C(r, ') = F4(t', 1, &, 0) - CT (¥, )] (53)
0

as follows by taking the inverse of (26). Substituting (33)—(34) and inserting the result in (5)
we get after some algebra

ih > -
P(r, 1) = g/dr//dr”/dr”’/ dow o*x(r, v, 0 +i0) - G, 1", w +i0) - T, ¥, w)
0

o0
CC, w)e Y —in / dr’ / do T, r, w) - C(r, w)e  +h.c. (54)
0

where we have employed (8) and (36). The longitudinal part of this expression can be rewritten
with the use of (47) as:

[P(r, )] = —%/dr’/dr”f dw ’[G(r, ¥, w +i0)],
c 0

T, v, w) - C’,w)e ™ +he. (55)

From the Maxwell equation V - (¢gE +P) = 0 it follows that the left-hand side is proportional
to the longitudinal part [E(r, #)]. of the electric field. The ensuing expression for the latter is
analogous to (52), so that we arrive at the following result for the complete electric field:

o0
E(r, 1) = iuoh f dr’ / dr” / dw o*G(r, v, 0 +i0) - T(r", ¥, w) - C", w) e " +h.c.
0
(56)

Inspection of (54) shows that the polarization consists of two terms. The first term is
proportional to the electric field, at least in Fourier space and after taking a spatial convolution
integral. The proportionality factor is x(r, ¥’, w), which plays the role of a susceptibility
tensor, as we anticipated in the previous section. The second term in (54) is not related to the
electric field. It represents a noise polarization density P, (r, ) defined as

oo
P,(r, 1) = —ih / dr// do T, r,w) - Cr',w)e ™ +h.c. (57)
0

that has to be present so as to yield a quantization scheme in which the validity of the canonical
commutation relations in the presence of dissipation is guaranteed. Introducing the Fourier
transform P, (r, w) via

P, (r,7) = / doP,(r, ) e +h.c. (58)
0
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and its counterparts E(r, w) and P(r, ), we get from (54) with (56):
P(r,w) = /dr/x(r, r,w+i0) - E(r', o) + P, (r, w). (59)

The Fourier-transformed noise polarization density is proportional to the diagonalizing
operator:

P,(r,w) = —ih / dr' T(, r, w) - C(, w), (60)

as follows from (57) and (58). As we have got now an explicit expression for P, (r, ®) we can
derive its commutation relation. By employing (39) we obtain

[Py(r,0), Pl(r,0)] = —i;l%[x(r, r', w+i0) — x(r, ¥, ® — i0)]§ (w — @"). (61)

This commutation relation is a generalization of that postulated in the phenomenological
quantization scheme for isotropic dielectrics without spatial dispersion [7—10]. In the present
approach, we have been able to prove its validity.

Both the fields and the polarization density can be rewritten in terms of P, (r, w). We get
from (51), (54) and (56) upon eliminating C(r, w) in favour of P, (r, ®):

E(r, 1) = — o / dr’ / dow ’G(r, ¥, 0 +10) - P, (r', w) e + h.c. (62)
0
o0 .
B(r, 1) =ipo / dr’/ dwwV x G(r,r', w +i0) - Py(r', ) e +h.c. (63)
0
1 o :
P(r,t)=—— / dr’ / dr”/ dw o*x(r, ¥, 0 +i0) - G, 1",  +i0) - Po(r", w) e 7'
¢ 0
00 .
+ / 4o Py(F, w)e ™ +h.c. (64)
0
By adding (62) and (64) we get an expression for the dielectric displacement D(r, ). Upon
using (47) we may write it as
[e.¢]
D(r,?) = — / dr’/ dwV x [V x G(r, ¥, » +i0)] - Po(r', w)e " +h.c. (65)
0

Clearly, the dielectric displacement is purely transverse. Comparing with (63) we find that
Maxwell’s equation V x B(r, 1) = uodD(r, t)/0¢ is satisfied.

It is instructive to return to the time-dependent representation of the linear constitutive
relation (59):

t
P(r,t) = /dr’/ dt'x(r,r',t —t") - E@, ") +Py(r, 1) (66)
—0Q
with the time-dependent susceptibility tensor defined by writing

o0
x(r, ¥, w+10) =/ dt x(r, ', 1) e, (67)
0

The convolution integral in the first term of (66), which expresses the causal response of
the medium, depends on the electric field at all times ¢" preceding ¢ and at all positions r’,
whereas the second contribution is the noise term, which in classical theory does not appear.
Sometimes [26] a different splitting of the various contributions to the polarization density is
proposed, by writing an equation of the general form of (66) in which the response term covers
only a limited range of values of ¢/, for instance ¢’ € [0, t] for t > 0. In such a formulation
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the convolution integral does not represent the full causal response of the medium, so that part
of the response is hidden in the second term. As a consequence, the latter is no longer a pure
noise term, so that it cannot be omitted in the classical version of the theory.

The above expressions for the fields and the polarization density in terms of the Fourier-
transformed noise polarization density satisfying the commutation relations (61) are the central
results in the present formalism for field quantization in inhomogeneous anisotropic dielectric
media with spatio-temporal dispersion. Although we are describing dissipative media, it has
not been necessary to explicitly introduce a bath, as is commonly done in the context of
damped-polariton treatments [15, 16, 19, 20]. In the following section, we shall show how a
bath may be identified in the present model.

5. Bath degrees of freedom

In the Hamiltonian (21) the dielectric medium is described by the operators Cy,(r, ) and
Cjn (r, w). The polarization density P(r) and its canonical conjugate W(r) are given in (5)
and (24) as suitable linear combinations of the medium operators C,, and Cjn. Since the
latter depend on the continuous variable w, they describe many more degrees of freedom than
P and W. The extra degrees of freedom can be taken together to define a so-called bath,
which is independent of P and W. Although the name might suggest otherwise, the bath as
introduced in this way is part of the medium itself, and not some external environment. Its
role is to account for the dissipative effects in the dispersive medium, which may arise for
instance through a leak of energy by heat production. In the following we shall identify the
operators associated with the bath. Subsequently, we shall show how the Hamiltonian can be
rewritten so as to give an explicit description of the coupling between the polarization and the
bath. In this way, we will be able to compare our model to its counterparts in previous papers
[15, 16, 19, 20].

The bath will be described by operators Cy(r, w) and CL(r, ) satistying the usual
commutation relations. These bath operators are linear combinations of the medium operators:

Cy(r, ) :fdr’f do/[Hi(r, ¥, 0, 0) - Con(r', &) + Ha(r, ¥, 0, o) - CL (X, )]
0
(68)

with tensor coefficients H; that will be determined presently. Since the bath variables are by
definition independent of both P(r’) and W(r’) for all r’, they have to commute with the latter.
With the use of (5) and (24) we get from these commutation relations the following conditions:

oo
/dr”/ do"[Hi(r, 1", 0, 0") - T"@", ¥, ") + Ho(r, ¥, 0, &") - T, X', ") =0 (69)
000
f dr/// a)//w//[Hl (r’ r//’ (,L)’ w//) . T*(I‘”, r/’ a)//) _ Hz(l‘, r//’ (,(), w//) . T(r//’ r/’ w//)] — O.
0
(70)
To determine H; we start from the following Ansatz:

Hi(r, ¥, 0, o) =/dr” [S(w—w’)hl(r, r’,w) + —hy(r, r”,w)} T, o)

w— o +1i0
(71)

1 =k ./ /! /
Hy(r, v, w, o) = —/dr” n hy(r,t,0) T @, 1, o) (72)
1)

wl
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with new tensor coefficients h;. Substituting these expressions in (69) and (70) and using (36)
and (39), we find that both of these conditions are simultaneously satisfied when h; and h;, are
related as

1
/dr” hy(r,r", ) - x@", v, w+i0) = I / dr’hi(r, v, o) - [x(@”, ¥, w +1i0)
i

—x@", ¥, o —i0)]. (73)

Hence, we are left with a single independent coefficient. It can be determined by imposing
the standard commutation relation of the form (4) for Cy(r, ) and CL(r’, ). Using (68)
with (71) and (72) we arrive at the condition:

1 N

5 / dr” / dr’”hi(r, v, w) - [x@", ", 0 +10) — x (", ¥, v — i10)] - hT(r’, r’, w)
i

nh ,

=—I8(r—-r). (74)
&0

The vanishing of the commutator of Cy(r, w) with Cy(r/, ') is warranted on the strength
of (73).
In view of (39) a solution of (74) is

hir,r,w) =T r, 0 (75)

and hence, on account of (73)
h
hy(r,v,w) = — / dr’ T*(r, ", ) - x ' (0", ¥, w +i0). (76)
)

It should be noted that the coefficients h; are determined up to a unitary transformation. This
freedom, which is available to H; as well, corresponds to a natural arbitrariness in the choice
of the bath operators themselves.

As the bath operators have been identified now, we can rewrite the Hamiltonian so as to
clarify their role in the dynamics of our model. To that end we have to eliminate the medium
operators C,, in favour of the bath operators C,. Employing (5), (24) and (68) we can write
the medium operators as

Cn(r,w) = /dr/ T(r,r, ) - [%a)/dr”Fl(r/, r') - P@”) — W(r/)i|

+ /dr// do/[A{ (K, 1, o, ) - Cy(r, @) — Fa(r, 1, o, @) - C} (X', )]
0
(77)

With the use of this expression the contributions involving the medium operators in (21) can
be rewritten. In this way, we arrive at the following alternative form for the Hamiltonian of
our model:

H = /dr {L[H(r)]2 + L[V /\A(r)]z} +771/dr/OQ dwal(r, ) - Cp(r, w)
2¢e 20 0

&0 / 1 /" —1 /
+ dr | dr | dr dr” P(r) -F (r,r
2mih? / / / / ™) ®r)
o0

. {/ do o’ [x (', v, @ +i0) — x (¥, 1", w — 10)]} FN ) - P
0

+ L/dr{[P(r)]L}2 + lh/drf dr' W(r) - F(r, r') - W)
280 2



3710 L G Suttorp

—h/drf dr W(r) - F(r,r) - A + l77l/dr/dr’A(r) “F(r,r') - A(r)

/dr/dr /dr”/ do CT(r ) - T, ¥, o)

x—l(r v, w+i0) - P(r") — h.c.]. (78)

As before, the tensor coefficients T and F are related by (23), while the susceptibility x follows
from T via (36), which implies (39).

We are now in a position to compare the present model with that discussed in previous
papers [15, 16, 19, 20]. The Hamiltonian (78) takes account of anisotropy and spatial
dispersion. To make contact with the earlier treatments these features should be left out. In
those circumstances both the susceptibility x and the tensor coefficients T, F are isotropic and
local, so that one has for instance:

X(r. v, 2) = x(r, ) —r'). (79)

Furthermore, the dielectric medium of the present model has got an arbitrary temporal
dispersion: the frequency dependence of the susceptibility is governed by that of T, as
is obvious from (36). In our previous treatment of the inhomogeneous damped-polariton
model [19, 20] the scalar susceptibility satisfied a sum rule to the effect that the integral
fooo do o’ [x(r, w +1i0) — x(r, 0 — i0)], a generalization of which occurs in the third term
of (78), is proportional to the square of an effective frequency @o(r). The latter parameter
already figured in the original Hamiltonian in [15, 16], albeit in a space-independent form.
Finally, in our earlier work we followed the notation in [15, 16] by representing the bath
operators Cy(r, w) and their Hermitian conjugates by equivalent position and momentum
operators Y,,(r) and Q,(r). Implementing this alternative notation here as well, one shows
that (78) indeed reduces to the Hamiltonian in [19, 20] for the special case of an isotropic
spatially-nondispersive medium.

6. Conclusion

The Hamiltonian model that we have considered in this paper is a suitable tool to underpin
the quantum formalism for a general linear dielectric medium and of the electromagnetic
field propagating through such a medium. By solving our model we have succeeded in
giving a justification of the postulates on which the phenomenological quantization scheme
for electrodynamics in dielectric media is usually based.

Our model incorporates many features to warrant the generality of the description.
Apart from allowing for inhomogeneities and anisotropies of the medium it has the virtue
of accommodating a quite general spatio-temporal dispersion. In fact, the susceptibility tensor
of the dielectric medium has been identified in (36), which implies the Kramers—Kronig
relation (41). According to that relation the susceptibility in the complex frequency plane
is determined by the discontinuity across the cut along the real axis. All anisotropic
inhomogeneous linear media with spatio-temporal dispersion that respond causally to an
external electric field are characterized by a susceptibility tensor x(r, r’, w) of the form (41).
Under the assumption that the dielectric medium is lossy without net gain, the discontinuity of
x(r, r', w) forw > 0isapositive-definite integral kernel. Hence, one may use (39) to introduce
atensor T(r, r’, ), which is uniquely defined up to a unitary transformation. Subsequently, one
can construct the model Hamiltonian (21) and proceed with its diagonalization. In conclusion,
our formalism applies to all anisotropic lossy dielectric media with a spatio-temporal dispersion
that is compatible with the fundamental principles of causality and positive-definiteness of
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the dissipative energy loss. Incidentally, it may be remarked that amplifying dielectric media,
which have been treated in the context of the phenomenological quantization scheme as well
[10, 29], are not covered by the present damped-polariton model. To describe media with a
sustained gain, e.g. a laser above threshold, one has to incorporate a driving mechanism in
the Hamiltonian, which accounts for the ongoing input of energy that is indispensable for a
stationary gain.

As we have shown, the time evolution of the dynamical variables for field and matter
can be determined completely by deriving the operators that diagonalize the Hamiltonian.
The diagonalizing operators are closely related to the noise part of the polarization density,
which plays an important role in the phenomenological quantization scheme. The proof of
the commutation properties of the noise polarization density follows from its relation to the
diagonalizing operators.

In setting up our model Hamiltonian we have avoided to introduce a bath environment
from the beginning. The subsequent formalism could be developed without ever discussing
such a bath. Nevertheless, one may be interested in an analysis of the complete set of degrees
of freedom of the dielectric medium in our model. If that analysis is carried out, one finds, as
we have seen above, that specific combinations of medium variables can be associated with
what may be called a bath. The coupling of the polarization to this bath can be held responsible
for the dissipative losses that characterize a dispersive dielectric.
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Appendix A. Lagrangian formulation

In this appendix we shall show how the Hamiltonian (21) can be related to a Lagrange
formalism. We start by postulating the following Lagrangian for an anisotropic linear dielectric
with spatio-temporal dispersion that interacts with the electromagnetic field:

I NTI o i [ doliOum o - o210 o
L=|[dr 280[A(l')] 5 [VAAMDI ¢ + dr | do{[Qn(r, ®)]” — o [Qun(r, ®)]7}
Ko 2 0

. 1
+ / drP(r) - A(r) — S / dr{[P(r)]L}2. (A.1)

Here A(r) is the transverse vector potential and Q,, (r, @) are material coordinates depending
on position and frequency. The polarization density P(r) is taken to be an anisotropic and
non-local linear combination of these material coordinates of the form

P(r) = f dr’ f o Qu(r, @) - To, 1, o) (A2)
0

with a real tensor coefficient Ty (r, r’, w). One easily verifies that the Lagrangian equations
have the form

1. .
AA(r, 1) — C—ZA(I', 1) = —puo[P(r,H)lr (A.3)
Qu(r,w, 1) + 0*Qu(r, w, 1) = /drTo(r, r,w) -E@,1) (A.4)

with the electric field given as E(r, 1) = —A(r, ) — (1/&0)[P(r, 1)]L. The first Lagrangian
differential equation is consistent with Maxwell’s equation, as it should. The second



3712 L G Suttorp

Lagrangian equation shows that the material coordinates are harmonic variables that are
driven by the electric field in an anisotropic and non-local way.
Introducing the momenta II(r) and Py, (r, ®) associated with A and Q,, as

II(r) = gA(r) (A.5)

P, (r, ») = Qu(r, ») + / dr' To(r, v, ) - A(X) (A.6)

we obtain the Hamiltonian corresponding to (A.1) in the standard fashion. The result is

H :/dr {i[n(r)]2 + L[V A A(r)]z} + 1/dr/oo do{[Pm(r, )] + 0’ [Qum(r, ®)]*}
2¢ 20 2 0
— /dr/dr//oo doPy(r, ) - To(r, r', ) - Ar)
0
+%/dr/dr/fdr”/OO doA) - To(,r,w) - To(, ", ) - A@")
0

1
*5— / dr {[P(r)].}". (A7)
€0

As a final step we wish to rewrite the Hamiltonian in terms of material creation and
annihilation operators CIn and C,, as used in (21) of the main text. We introduce the latter by
writing

1/2
P, (r,0) = (7“’) /dr’[Cm(r/,a))~U(r/,r, w)+ClL (', ») - U (', 1, »)] (A.8)

1/2
Qun(r, w) =i(2i> /dr’[Cm(r/,a)) U, r,0) — CL (', ») - U, 1, 0)] (A.9)
w

with tensorial coefficients U that satisfy the unitarity condition

/ dr’0(”, r,w) - U (", ¥, ) =18(r — r). (A.10)
Substituting (A.8) and (A.9) in (A.7) we recover (21) of the main text, with T given by

T(r, v, ) = —hw)"/? / dr’u(r, v, w) - To(, ¥, ). (A.11)
Since T is real, one finds that introducing T in this way implies that it fulfils the relation

/dr”'i’(r”, r,o) T@’, r,w) —cc.=0 (A.12)

which is consistent with (but somewhat stronger than) conditions (8) and (22) imposed on T in
the main text. Adopting the above stronger relation implies that the susceptibility (36) acquires
an additional symmetry property on a par with (37) and (38), namely x(r, 1/, z) = x(r, ¥, —2).
As the validity of (A.12) is not essential in setting up our Hamilton formalism, we have
refrained from using it in the main text.

Appendix B. Evaluation of the tensorial coefficients f;

In this appendix, we will show how equations (27)—(30) can be solved. We start by using (27)
to eliminate f; from (28). As a result we obtain the differential equation:
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/. / a)z / /! /! ! /
Af(r,r, w) + —h(r,r, o) —ph | drrfy(r, r’, w) - [F(r7, r)]r
c

o0
—ino / dr/// dw”a)"{f3(r, Y, o, w//) . [T*(I‘N, r, 0)//)]’1"

0
—fi(r, 1", 0, ") - [T, ¥, 0")]p} = 0. (B.1)

To get an expression for the last two terms we use (29) and (30). First, we multiply (29) by
T (r', r"”, ') and integrate over r’. Relabelling the dummy variables we get

_]'hw/ / dr// / dr///fz(r’ r//’ a)) . T(I'W, r//’ w/) . T* (r///’ r/’ a)/)
—(w—0) f dr'i;(r, 1", w, o) - T*@”, v, o)

h o0
+— | dr” / dr” / dr”” / do"{f3(r, v, @, ") - [T, ¥, &)
&0 0

+f4(l’, r//’ C(), w//) . [T(l‘//, r///’ C()//)]LW} . -i'-(r////’ l.///’ a)/) . T*(r////, r/’ a)/) — 0.
(B.2)

" ') and integrating over r’:

A similar relation is obtained by multiplying (30) by T(r/, r
_]hw/ / dr// / dl‘”’fz(l‘, r//’ a)) . -'r* (I'///7 l.7// , a)/) . T(I‘W, I,/7 w/)
—(w+ ) f dr'fty(r, v, 0, @) - T@', 1, o)
h oo
_ dr// / dr/// f dr///// da)”{f:{ (r’ r//7 w7 w//) . [T* (r//’ r///’ a)//)]LW
£0 0

+f4(r’ I'//’ a)’ a)//) . [T(I‘”, r///’ C()”)]L/”} . T*(I‘””, l'///’ C(),) . T(r////7 r/7 a)/) — 0

(B.3)
We add (B.2) and (B.3). Upon integrating over " and using (8) and (23) we get
[e ]
—ih/dr”fz(r, r',w)-F@’, 1) — w/dr”/ do”[f3(r, 1", w, ") - T@”, r', ")
0
o0
+H@, ", w, ") - Ta", ¥, "]+ / dr”/ do" " [f3(r, v, w, ®")
0
T, Y, o) — (Y, 0, 0") T, r, ") =0. (B.4)

By taking the transverse part of this relation with respect to r’ we get an identity that can be
used to rewrite (B.1) in the form

2 00
—[f(r, T, 0) x%’] x V' + w—2f2(r, r,w) — iuoa)/dr/’/ do”{f3(r, v, w, ")
¢ 0
AT Y 0 + (e Y, 0, 07) - [T Y, 0")]p} = 0. (B.5)

Here we used the transversality of f,(r, r’, w) in its second argument to write the first term
as a repeated vector product, with the spatial derivative operator V' acting to the left on the
argument r’ of the function f,(r, r’, w).

The integral in (B.5) contains the transverse parts of T and T* only. A more natural form
of the differential equation, with the full tensors T and T*, is obtained by introducing instead
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of f, a new tensor g defined as

o(r, v, w) = iwfh(r,r, w) — —/dr”/ do"{fi3(r, v, w, ") - [T*@", ¥, &)L
+f4(r3 r//s w, w ) : [T(r//v r ) CL)H) L’}° (B6)

It satisfies a differential equation, which follows from (B.5) as:

2 [ee)
—lg(r, T, ») x V] x V' + w—zg(r, ¥, ) + pow? / dr”f do"[f3(r, 1", 0, ")
¢ 0
T, )+l Y, 0, 0") - T@, ¥, 0")] = 0. (B.7)

The integral contribution still depends on f; and f4, so that the differential equation is not yet
in closed form. However, we may rewrite the integral in such a way that its relation to g
becomes obvious. This can be achieved with the help of the identity:

oo
/dr”/ do"[f3(r, v, 0, 0") - T*@", ¥, ") + f4(r, v, 0, 0") - T@", ¥, 0")]
0

=g / dr’g(r,r”, w) - x@", ¥, w —i0) + s(r, v, w), (B.8)

which contains a tensor s(r, r’, @) that arises while avoiding a pole in the complex frequency
plane, as we shall see below. Furthermore the right-hand side contains the susceptibility tensor
x that has been defined in (36). In (B.8) the frequency is chosen to be in the lower half of the
complex plane just below the real axis. Correspondingly, the term —i0 is an infinitesimally
small number on the negative imaginary axis.

To prove (B.8) we divide (B.2) by @’ — w + 10, with i0 an infinitesimally small imaginary
number. The result is

o N
_]'h - + .0 /dr// / dr///fz(r’ r//’ a)) . T(r///’ r//’ w/) . T* (r///’ r/’ w/)
o —w+i

h 1
+/dr”f3(r,r”,w,w’)~T*(r r a))+——
g o' —w+10

/ dr// / dr/// / dr//// / d(,()”{f3 (r’ r//’ a)’ a)//) . [T* (r//’ r///’ (,()//)]LW

+f4(l‘ r 0) a)//) T(r// r w//)]L//} T(r//// 11 a)/) . T*(I'W/, r/’ a)/)
=8(w — &)s(r, ¥, o). (B.9)

On the right-hand side, we have introduced a term proportional to the delta function § (w — ')
to account for the fact that the division by o’ — w + i0 yields a singular result for v = o/,
as discussed in [28]. The coefficient s is as yet unknown. Likewise, upon dividing (B.3) by
® + ' we obtain

/
- / dr// / d]:,///.f2 (I_7 r//, a)) . -’i’-* (r///, r//’ 0)/) . T(I'W, r/7 w/)

w+w
/ dr'fy(r, Y, 0, o) - T@', ¥, o) — — / dr” / dr’” / dr””
gy w+ o

00
x / da)”{f3 (I‘, I‘U, o, a)//) . [T* (I‘”, I‘W, w//)]LW +f, (l‘, I‘H, o, wu)
0

—ih

. [T(I‘”, r///’ a)/,)]LW} . -'i-*(r////’ r///’ a)/) . T(I‘/W, r/’ (,()/) — O. (BIO)

We subtract (B.10) from (B.9) and integrate over . Inspecting the contributions from the
last terms on the left-hand sides we find it useful to introduce the susceptibility tensor (36).
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Upon employing moreover (8), we get as a result of combining (B.9) and (B.10):

—isow/dr”fz(r, ', w) - x@’, r, o —i0) +/dr”f<>O do"[f3(r, v, 0, ") - T (", ¥, ")
+ v, 0, 0") - T, ¥, )] 0
/ dr” / dr” / do"{f3(r, 1", 0, ") - [T, 1", )]
+hr ' 0, o) [TE" 1", "]} - x (@ ¥, 0 —i0) = s(r, v, w). (B.11)

When (B.6) is invoked to eliminate f, in favour of g, we recover (B.8).
Having established (B.8) we insert it in (B.7) so as to arrive at an inhomogeneous wave
equation for g:

2 2
—lgr. ¥, 0) x VI x V' + w—zg(r, r, o)+ a)_2 / dr’g(r,v", w) - x(", r',  — i0)
c c

= —pow’s(r,r, w). (B.12)

To solve g from this differential equation we employ the Green function G(r, ', z) associated
with the operator on the left-hand side. It has been defined in (35). In terms of this Green
function the solution of (B.12) reads

o, v, w) = —uowZ/dr”s(r, r’, o) -G’ r, o —i0). (B.13)

With the use of the above expression for g in terms of s, we can evaluate the coefficients f;
successively. Let us start with f,. From (B.7) it follows that the integral contribution in (B.6)
is proportional to the longitudinal part [g(r, r', w)]1; of g. As a consequence, (B.6) implies
that f, equals —(i/w)[g(r, r', w)]1. Hence, upon using (B.13) and introducing the tensor u by
writing s as

s(r,r,w) = /dr”u(r, r, o) - T0’,r, v) (B.14)
we obtain
f(r, v, ) = iuoa)/ dr” f dr’”u(r, v, 0) - T, v, w) - [G@", ¥, w —i0)]p. (B.15)
On a par with this expression we get from (27)
fi(r, v, w) = %2 / dr” / dr’”u(r,v’,w) - T’ ¥, o) - [G@", ¥, w —i0)]p. (B.16)

Expressions for f;3 and f4 follow from (B.9) and (B.10) upon using (B.13)—(B.15) and the
longitudinal part of (B.7). We get

f3(r’ r/’ @, C()/) = 8(6{) - a)/)u(l', r/a CL))

_ pLoha) / dr// / dr/// / dl‘m/u(l‘, I_//, a)) . T* (r//’ I_///’ a))
. [G(r/// i 10)]T/ " -'i'-(r/ r//// /)

+ Moh 0 / dr” / dr” / dr’”’u(r, v, w) - T°@", v, )
—i
. G(r’”, l‘””, —i0) - T, ", ) (B.17)
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fu(r, Y, 0, ) = pohw / dr” / dr” / dr'”u(r,v”, w) - T*@", ", w)
A [G(I’W, I‘W/, w — iO)]Trw A -i-* (l‘/, r////’ w/)
2
w
_ /J,Oh / dr// / dr/// / dl‘””u(l‘, r//’ CU) . T* (r//’ I.///’ a))
w+ o
-G, r"", w—10) - 'i'*(r’, r”’, o). (B.18)

The introduction of u instead of s has led to the simple form of the first term on the right-hand
side of (B.17).

Appendix C. The tensor u

In appendix B, the coefficients f; have been obtained. They are all proportional to the tensor
u(r, r’, w). In this section, we shall show how this tensor can be determined.

After the insertion of the coefficients in expression (26) it follows that the diagonalizing
operator C(r, w) itself is proportional to u as well. Since C(r, w) and its Hermitian conjugate
must satisfy canonical commutation relations of the general form (4), u has to fulfil a constraint
that is obtained by evaluating the commutator [C(r, w), C'(r/, @')]. In fact, substituting
expression (26) and its Hermitian conjugate in the commutator and employing (2) and (4) we
arrive at the following condition:

in / dr//[fl (rv r//v CL)) : ’f;(r/3 I‘”, 0)/) - f2(l', l'//, C()) : ?T(r/v r”» w/)]

+ /dr” /Ooo do"'[f3(r, ", o, ") -f;(r’, r’, o, ")

—f4(r, v, 0, 0") B0, @, 0] =180 — )80 — o). (C.1)
After the insertion of the formulae for f; we arrive at a bilinear condition for u of the form
/dr” / dr’”u(r, v, ) -M@", ¥, w, o) - 0@, v, o) =18(r — )5 (0w — ). (C.2)

The explicit form of the tensorial integral kernel M follows by evaluating (C.1)
with (B.15)—(B.18). It contains contributions with a variable number of Green functions
G. The simplest contribution My is that without a Green function, which is found to be

Mo(r, ¥, w, @) =18 —1r)é(w — o). (C.3)

The next contribution M; consists of all terms containing a single Green function:

M (r,r, w, o) = —puoh / dr” / dr’” T*(r, v, w) - {w[G(r”, r’, w—1i0)]p

2
+o[G' (@, Y, @ —i0)]p — #G(r”, r’, w —i0)
w—o —i0
w/Z . B
+—G "7, 0 — iO)} T, v, o). (C.4)
w—ow —10

The first two terms contain the transverse part of the Green function, whereas the last two
depend on the full Green function.

Finally, we have got the contributions with two Green functions. Since again both the
full Green function and its transverse part show up, we can distinguish various types of terms.
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The terms with two transverse Green functions become upon invoking (8)
/ N o Moh ’ ’ " " I s "
Mgrr(r,r,w,w)——zwa)(a)+w) dr dr dr'”" T"(r, 1", w)
c
AGE Y 0 —i0)]p - [GT ¥, @ —i0) ] - T, ¥, ). (C.5)

The terms with one transverse and one full Green function are

My (r, v, w, ') = —a)a) /dr”/dr”’/dr””/dr T (r, 1", w)

~{wG(r”, r’, w—i0) - x(@", ", w —i0) - [G" (", ¥, o' — i0)]p
+(,()/[G(I‘”, r///’ w — iO)]TW . X* (r////’ r///’ a)/ _ iO) . G*(r'l)’ r////’ (,()/ _ io)}
T, r’, o) (C.6)

where we introduced the susceptibility tensor (36). The last set of terms we have to consider
is that with two full Green functions. Again using (36) we get

h 2
Mo(r, ¥, o0, ) = PO / ar’ / dr” / ar’” / T, 1, )

2 w—o —i0
. G(r// r 10) X(r/// /1 10) ~*(r//// /1 a) _ 10)]
-G (r,r””,w/—lo)oT(r,r,a)). (C.7)
Having obtained all contributions to the integral kernel M we are now in a position to
evaluate their sum. We start by investigating the terms with transverse Green functions, as
given by (C.5), (C.6) and part of (C.4). Taking all terms together we may write them as

woh / dr” / dr” / dr”'T*(r, ¥, w) - {—a) [Ga". r" w— iO)]T,/,

/1 /111 w/z ~ K I /1 / :
(16" —r )——ZG(r , ", w —i0)
c

(,()/2 -
—— [ de'x (@, Y, 0 —i0) -G (@, 1, 0 — iO)]
2

W?
—o [I 5" — 1) — 26w, 1, w — i0)
c
w? )
-3 / dr'G@”, r’, 0 —i0) - x(x’, ", w — i0)

. [G*(l‘””, I'W, (,()/ _ iO)]TW} . T(I',, I'W/, w/). (CS)

The sets of terms that multiply the transverse Green functions are transverse themselves, as
follows from (35). Since the integral of the scalar product of a longitudinal and a transverse
function vanishes, we can replace each of these transverse Green functions by their full Green
function counterparts. Subsequently, upon using (35) and performing partial integrations we
may rewrite (C.8) in the form

,ugh(a)+a)/)/dr”/dr”//dr””T*(r, I’”, w) - {[G(l’//, I’W, w — i0) X(VW] X%////}

G o —i0) T, o). (C.9)

An alternative form for this expression is found upon splitting it in two terms by writing the
factor (w + ') as the difference of w?/(w — ' —i0) and @™ /(w — @’ —i0). Subsequently, we
carry out partial integrations in the first term, while we leave the second as it stands. Finally,
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we use (35) to eliminate the double spatial derivatives. We end up with a set of terms that
precisely cancel (C.7) and the remainder of (C.4) (i.e., the terms without the transverse Green
functions).

Collecting the results we find that we are left with (C.3). The result for M is thus quite
simple:

M@, v, 0, o) =15t —1)5(w — ). (C.10)

As a consequence, condition (C.2) becomes
/dr”u(r, r', o) 0" @, r,w) =18(r —r). (C.11)

In other words, the tensorial integral kernel u(r, r’, @) must be unitary. For convenience we
choose from now on

ur,r',w) =18(r—r) (C.12)

so that u is independent of the frequency and diagonal in the spatial variables. A different
choice for u leads to a unitarily equivalent form of the diagonalizing operator C(r, w), as
follows from (26) with (B.15)—(B.18). Upon inserting (C.12) in (B.15)—(B.18) we finally
arrive at expressions (31)—(34) of the main text.

As a final check of the expressions for f; we may verify that the commutator
[C(r, w), C(r', )] vanishes for all position and frequency arguments. To that end we have
to check whether the condition

ih / dr//[fl (ra r”? a)) : ’fz(r,7 r,/7 w/) - f2(r7 r”5 CI)) . i‘1 (r/’ r//5 (l),)]

o0
+ /dr/’/ do"[f3(r, v, w, ") - T4(0, ¥, &, &)
0
_f4(r9 r//a w, C()//) . f3(1‘/’ I'N, w/r CDN)] =0 (C13)

is satisfied. Along similar lines as above one verifies that this is indeed true.
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